
3/15/2020 My Project: Main Page

file:///C:/Users/melab15/Desktop/SUMO/html/index.html 1/1

My Project Documentation

Introduction
This is a blueprint for a cooperative multitasking infrastructure to be implemented in the SUMO bot competition. The
goal of the competition is to survive in a steel rink, bordered with white paint and be the last remaining bot after 3
minutes. The bots must startup and shutdown on a remote control command, but otherwise be completely
autonomous. While most bots took the approach of chasing other bots and pushing them with brute force, our bot
recognized its weaknesses and took the approach of most effectively running away and avoiding interaction.

Purpose
This code contains the various tasks and interrupts to be run during operation of our SUMO bot. It also contains a
scheduling program to run the tasks cooperatively by setting timings and priorities. Shares are set and cleared
according to code in hardware-based tasks, and in order to run code in strategy-based tasks. In this way, the
hardware interfaces with the software.

Usage
To impliment this infrastructure, copy the list of functions, initialization code, and scheduling code into a main file
with necessary cooperative multitasking files imported. The pins used correspond to pins found on the Nucleo-
L476RG micro-controller and X-Nucleo-IHM04A1 DC motor driver expansion.

Testing
To determine if this code works, implement it on a SUMO bot with matching hardware and pin setup, and send a
start signal to the IR reciever. Optimal testing would include a rink similar to the one used in the competition, with
similar testing conditions.

Bugs and Limitations
One significant bug remaining in the program is that when the front optical sensor sees an opponent and initiates its
avoidance protocol, it will sometimes run an additional time because it sees the opponent during the execution. This
causes the bot to run backwards off the edge of the rink. A list of limitations can be found in the body of the report.

Location
http://wind.calpoly.edu/hg/mecha12/file/58c89a58431f/Final%20Project/main.py

Generated by 1.8.14

http://wind.calpoly.edu/hg/mecha12/file/58c89a58431f/Final%20Project/main.py
http://www.doxygen.org/index.html

3/15/2020 My Project: motor.MotorDriver Class Reference

file:///C:/Users/melab15/Desktop/SUMO/html/classmotor_1_1_motor_driver.html 1/2

◆ __init__()

◆ set_duty_cycle()

motor.MotorDriver Class Reference

Public Member Functions
def __init__ (self, motor_number=1)

def set_duty_cycle (self, level)

Public Attributes
 motor_number

 ch1

 timer channel corresponding to CPU Pin PB4. More...

 ch2
 timer channel corresponding to CPU Pin PB5. More...

 level

Detailed Description

This class implements a motor driver for the ME405 board.

Constructor & Destructor Documentation

def motor.MotorDriver.__init__def motor.MotorDriver.__init__ ((selfself,,

 motor_numbermotor_number = = 11

))

Creates a motor driver by initializing GPIO
pins and turning the motor off for safety.

Member Function Documentation

3/15/2020 My Project: motor.MotorDriver Class Reference

file:///C:/Users/melab15/Desktop/SUMO/html/classmotor_1_1_motor_driver.html 2/2

◆ ch1

◆ ch2

def motor.MotorDriver.set_duty_cycledef motor.MotorDriver.set_duty_cycle ((selfself,,

 levellevel

))

This method sets the duty cycle to be sent
to the motor to the given level. Positive values
cause torque in one direction, negative values
in the opposite direction.
@param level A signed integer holding the duty
cycle of the voltage sent to the motor. Saturated at range
limits -100 and 100

Member Data Documentation

motor.MotorDriver.ch1motor.MotorDriver.ch1

timer channel corresponding to CPU Pin PB4.

channel 1 on timer 3

channel 1 on timer 5

motor.MotorDriver.ch2motor.MotorDriver.ch2

timer channel corresponding to CPU Pin PB5.

channel 2 on timer 3

channel 2 on timer 5

The documentation for this class was generated from the following file:

motor.py

Generated by 1.8.14

http://www.doxygen.org/index.html

3/15/2020 My Project: main Namespace Reference

file:///C:/Users/melab15/Desktop/SUMO/html/namespacemain.html 1/11

main Namespace Reference

Functions
def irInterrupt (time1)

def EncoderInterrupt (time4)

def StartInterrupt (time8)

def IR_command_sensor ()

def SharpLeftTurn ()

def EdgeTurning ()

def MotorShutDown ()

def EdgeSensor1 ()

def EdgeSensor2 ()

def OpticalSensor1 ()

def OpticalSensor2 ()

def Strategy ()

def Garbage_Day ()

def matchTimer ()

Variables
 irq_state = pyb.disable_irq ()

 time1 = pyb.Timer(1, prescaler=79, period = 65535)

 pinA8 = pyb.Pin(pyb.Pin.board.PA8, pyb.Pin.IN)

 IC

 pin

 polarity

 callback

 time4 = pyb.Timer(4, prescaler = 79, period = 65535)

 pinB7 = pyb.Pin(pyb.Pin.board.PB7, pyb.Pin.IN)

 time8 = pyb.Timer(8, prescaler = 79, period = 65535)

 pinC7 = pyb.Pin(pyb.Pin.board.PC7, pyb.Pin.IN, pyb.Pin.PULL_DOWN)

 Left = motor.MotorDriver(motor_number=1)

 Right = motor.MotorDriver(motor_number=2)

 garbage_collection

 This task corresponds with Garbage_Day() to be added to the scheduler. More...

 ir_command
 This task is used with IR_command_sensor() to be added to the scheduler. More...

 shutdown

file:///C:/Users/melab15/Desktop/SUMO/html/classmotor_1_1_motor_driver.html
file:///C:/Users/melab15/Desktop/SUMO/html/classmotor_1_1_motor_driver.html

3/15/2020 My Project: main Namespace Reference

file:///C:/Users/melab15/Desktop/SUMO/html/namespacemain.html 2/11

 This task corresponds with MotorShutDown() to be added to the scheduler. More...

 strategy
 This task corresponds with Strategy() to be added to the scheduler. More...

 edge1

 This task corresponds with EdgeSensor1() to be added to the scheduler. More...

 optics1
 This task corresponds with OpticalSensor1() to be added to the scheduler. More...

 edge2

 This task corresponds with EdgeSensor2() to be added to the scheduler. More...

 optics2
 This task corresponds with OpticalSensor2() to be added to the scheduler. More...

 match_timer

 This task corresponds with matchTimer() to be added to the scheduler. More...

 sharpLeftTurn
 This task corresponds with SharpLeftTurn() to be added to the scheduler. More...

 edgeturn

 This task corresponds with EdgeTurning() to be added to the scheduler. More...

 ShutDownFlag
 Flag that determines if the SUMO bot is in shutdown mode or not. More...

 DutyCycle1 = task_share.Share ('i', thread_protect = True, name = "DC1")

 Stores the current value of duty cycle for a single motor train.

 DutyCycle2 = task_share.Share ('i', thread_protect = True, name = "DC2")
 Stores the current value of duty cycle for another motor train.

 EncoderCounter

 Stores the current count of elapsed encoder ticks. More...

 EdgeSensor1Flag
 Flag that determines if an edge or line was sensed by the front sensor. More...

 EdgeSensor2Flag

 Flag that determines if an edge or line was sensed by the edge sensor. More...

 times_up
 Flag that determines if the end of the round is upon us (2min50sec) More...

 sharp_left_turn

 Flag that determines if the bot should make a sharp left turn. More...

 edge_turn
 Flag that determines if the bot should commence edge turning. More...

 Side_Detection

 Flag that determines if the bot detects an obstacle at its left side. More...

 Front_Detection

file:///C:/Users/melab15/Desktop/SUMO/html/classtask__share_1_1_share.html
file:///C:/Users/melab15/Desktop/SUMO/html/classtask__share_1_1_share.html

3/15/2020 My Project: main Namespace Reference

file:///C:/Users/melab15/Desktop/SUMO/html/namespacemain.html 3/11

◆ EdgeSensor1()

◆ EdgeSensor2()

◆ EdgeTurning()

 Flag that determines if the bot detects an obstacle at its front side. More...

 InterruptQueue
 Queue that stores 38kHz infrared signal data collected by interrupts. More...

 vcp = pyb.USB_VCP ()

Detailed Description

@file main.py
 This file contains the code to run an autonomous SUMO bot

 @authors Anthony Catello, Joseph Heald, Schuyler Ryan

Function Documentation

def main.EdgeSensor1def main.EdgeSensor1 (())

This functions runs every 25ms and reads the edge sensor on the front of
the SUMO bot and raises a flag if it detects black. Using inverted logic,
action is taken when the flag is cleared-indicating a white line or
edge.

def main.EdgeSensor2def main.EdgeSensor2 (())

This functions runs every 25ms and reads the edge sensor on the right
side of the SUMO bot and raises a flag if it detects black. Using inverted
logic, action is taken when the flag is cleared-indicating a white line or
edge.

def main.EdgeTurningdef main.EdgeTurning (())

This function runs every 25ms and makes the SUMO bot maintain a close
orbit near the white edges of the rink by turning slightly.

3/15/2020 My Project: main Namespace Reference

file:///C:/Users/melab15/Desktop/SUMO/html/namespacemain.html 4/11

◆ EncoderInterrupt()

◆ Garbage_Day()

◆ IR_command_sensor()

◆ irInterrupt()

◆ matchTimer()

◆ MotorShutDown()

def main.EncoderInterruptdef main.EncoderInterrupt ((time4time4))

This function runs when an interrupt is triggered corresponding to timer 4.
Such an interrupt is triggered when the signal on the motor encoder is
disrupted by motor rotation.

def main.Garbage_Daydef main.Garbage_Day (())

This function runs every 2000ms and clears out memory every so often,
no big deal.

def main.IR_command_sensordef main.IR_command_sensor (())

This function is run every 100ms and processes any data that has been
collected in the InterruptQueue from irInterrupt().

def main.irInterruptdef main.irInterrupt ((time1time1))

This function runs when an interupt is recieved corresponding to timer 1.
Such an interupt is recieved when a 34kHz infrared signal is read from the
IR reciever located on the SUMO bot.

def main.matchTimerdef main.matchTimer (())

This function runs every 1000ms and keeps track of how much time has
elapsed since the start of the match

3/15/2020 My Project: main Namespace Reference

file:///C:/Users/melab15/Desktop/SUMO/html/namespacemain.html 5/11

◆ OpticalSensor1()

◆ OpticalSensor2()

◆ SharpLeftTurn()

◆ StartInterrupt()

◆ Strategy()

def main.MotorShutDowndef main.MotorShutDown (())

This function runs every 100ms and turns the motors off on the SUMO bot.
Other functions remain powered, but the bot stops moving of its own
accord.

def main.OpticalSensor1def main.OpticalSensor1 (())

This function runs every 25ms and reads the optical sensor on the front
of the SUMO bot and raises a flag if it reads a distance less than 8".

def main.OpticalSensor2def main.OpticalSensor2 (())

This function runs every 25ms and reads the optical sensor on the side
of the SUMO bot and raises a flag if it reads a distance less than 8".

def main.SharpLeftTurndef main.SharpLeftTurn (())

This function is run every 25ms and makes the SUMO bot take a sharp turn
approximately 90 degrees counterclockwise.

def main.StartInterruptdef main.StartInterrupt ((time8time8))

This function runs when an interrupt is triggered corresponding to timer 8.
Such an interrupt is recieved when start-up button is pressed.

3/15/2020 My Project: main Namespace Reference

file:///C:/Users/melab15/Desktop/SUMO/html/namespacemain.html 6/11

◆ edge1

◆ edge2

◆ edge_turn

◆ EdgeSensor1Flag

def main.Strategydef main.Strategy (())

This function runs every 25ms and is essentially the mastermind, or hub.
It runs time-based procedures and sets flags for event based procedures.

Variable Documentation

main.edge1main.edge1

Initial value:
 1 = cotask.Task (EdgeSensor1, name = 'Edge1', priority = 1,
 2 period = 25, profile = True, trace = False)

This task corresponds with EdgeSensor1() to be added to the scheduler.

main.edge2main.edge2

Initial value:
 1 = cotask.Task (EdgeSensor2, name = 'Edge2', priority = 1,
 2 period = 25, profile = True, trace = False)

This task corresponds with EdgeSensor2() to be added to the scheduler.

main.edge_turnmain.edge_turn

Initial value:
 1 = task_share.Share ('h', thread_protect = True,
 2 name = "Edge Orbit")

Flag that determines if the bot should commence edge turning.

file:///C:/Users/melab15/Desktop/SUMO/html/classcotask_1_1_task.html
file:///C:/Users/melab15/Desktop/SUMO/html/classcotask_1_1_task.html
file:///C:/Users/melab15/Desktop/SUMO/html/classtask__share_1_1_share.html

3/15/2020 My Project: main Namespace Reference

file:///C:/Users/melab15/Desktop/SUMO/html/namespacemain.html 7/11

◆ EdgeSensor2Flag

◆ edgeturn

◆ EncoderCounter

◆ Front_Detection

main.EdgeSensor1Flagmain.EdgeSensor1Flag

Initial value:
 1 = task_share.Share ('h', thread_protect = True,
 2 name = "SideEdge")

Flag that determines if an edge or line was sensed by the front sensor.

main.EdgeSensor2Flagmain.EdgeSensor2Flag

Initial value:
 1 = task_share.Share ('h', thread_protect = True,
 2 name = "FrontEdge")

Flag that determines if an edge or line was sensed by the edge sensor.

main.edgeturnmain.edgeturn

Initial value:
 1 = cotask.Task (EdgeTurning, name = "edgeTurn", priority = 2,
 2 period = 25, profile = True, trace = False)

This task corresponds with EdgeTurning() to be added to the scheduler.

main.EncoderCountermain.EncoderCounter

Initial value:
 1 = task_share.Share ('l', thread_protect = True,
 2 name = "Encoder 1")

Stores the current count of elapsed encoder ticks.

file:///C:/Users/melab15/Desktop/SUMO/html/classtask__share_1_1_share.html
file:///C:/Users/melab15/Desktop/SUMO/html/classtask__share_1_1_share.html
file:///C:/Users/melab15/Desktop/SUMO/html/classcotask_1_1_task.html
file:///C:/Users/melab15/Desktop/SUMO/html/classtask__share_1_1_share.html

3/15/2020 My Project: main Namespace Reference

file:///C:/Users/melab15/Desktop/SUMO/html/namespacemain.html 8/11

◆ garbage_collection

◆ InterruptQueue

◆ ir_command

◆ match_timer

main.Front_Detectionmain.Front_Detection

Initial value:
 1 = task_share.Share ('h', thread_protect = True,
 2 name = "front_detection")

Flag that determines if the bot detects an obstacle at its front side.

main.garbage_collectionmain.garbage_collection

Initial value:
 1 = cotask.Task (Garbage_Day, name = 'Trash',
 2 priority = 5, period = 2000, profile = True, trace = False)

This task corresponds with Garbage_Day() to be added to the scheduler.

main.InterruptQueuemain.InterruptQueue

Initial value:
 1 = task_share.Queue ('H', 200, thread_protect = False,
 2 overwrite = False, name = "Interrupt_Queue")

Queue that stores 38kHz infrared signal data collected by interrupts.

main.ir_commandmain.ir_command

Initial value:
 1 = cotask.Task (IR_command_sensor, name = 'IR_command',
 2 priority = 1, period = 100, profile = True, trace = False)

This task is used with IR_command_sensor() to be added to the scheduler.

file:///C:/Users/melab15/Desktop/SUMO/html/classtask__share_1_1_share.html
file:///C:/Users/melab15/Desktop/SUMO/html/classcotask_1_1_task.html
file:///C:/Users/melab15/Desktop/SUMO/html/classtask__share_1_1_queue.html
file:///C:/Users/melab15/Desktop/SUMO/html/classcotask_1_1_task.html

3/15/2020 My Project: main Namespace Reference

file:///C:/Users/melab15/Desktop/SUMO/html/namespacemain.html 9/11

◆ optics1

◆ optics2

◆ sharp_left_turn

◆ sharpLeftTurn

main.match_timermain.match_timer

Initial value:
 1 = cotask.Task (matchTimer, name = "match_timer", priority = 4,
 2 period = 1000, profile = True, trace = False)

This task corresponds with matchTimer() to be added to the scheduler.

main.optics1main.optics1

Initial value:
 1 = cotask.Task (OpticalSensor1, name = 'Optics1', priority = 2,
 2 period = 100, profile = True, trace = False)

This task corresponds with OpticalSensor1() to be added to the scheduler.

main.optics2main.optics2

Initial value:
 1 = cotask.Task (OpticalSensor2, name = 'Optics2', priority = 2,
 2 period = 100, profile = True, trace = False)

This task corresponds with OpticalSensor2() to be added to the scheduler.

main.sharp_left_turnmain.sharp_left_turn

Initial value:
 1 = task_share.Share ('h', thread_protect = True,
 2 name = "Sharp Left")

Flag that determines if the bot should make a sharp left turn.

file:///C:/Users/melab15/Desktop/SUMO/html/classcotask_1_1_task.html
file:///C:/Users/melab15/Desktop/SUMO/html/classcotask_1_1_task.html
file:///C:/Users/melab15/Desktop/SUMO/html/classcotask_1_1_task.html
file:///C:/Users/melab15/Desktop/SUMO/html/classtask__share_1_1_share.html

3/15/2020 My Project: main Namespace Reference

file:///C:/Users/melab15/Desktop/SUMO/html/namespacemain.html 10/11

◆ shutdown

◆ ShutDownFlag

◆ Side_Detection

◆ strategy

main.sharpLeftTurnmain.sharpLeftTurn

Initial value:
 1 = cotask.Task (SharpLeftTurn, name = "sharp_left_turn",
 2 priority = 2, period = 25, profile = True, trace = False)

This task corresponds with SharpLeftTurn() to be added to the scheduler.

main.shutdownmain.shutdown

Initial value:
 1 = cotask.Task (MotorShutDown, name = 'Shutdown', priority = 1,
 2 period = 100, profile = True, trace = False)

This task corresponds with MotorShutDown() to be added to the scheduler.

main.ShutDownFlagmain.ShutDownFlag

Initial value:
 1 = task_share.Share ('h', thread_protect = True,
 2 name = "ShutDown")

Flag that determines if the SUMO bot is in shutdown mode or not.

main.Side_Detectionmain.Side_Detection

Initial value:
 1 = task_share.Share ('h', thread_protect = True,
 2 name = "side_detection")

Flag that determines if the bot detects an obstacle at its left side.

file:///C:/Users/melab15/Desktop/SUMO/html/classcotask_1_1_task.html
file:///C:/Users/melab15/Desktop/SUMO/html/classcotask_1_1_task.html
file:///C:/Users/melab15/Desktop/SUMO/html/classtask__share_1_1_share.html
file:///C:/Users/melab15/Desktop/SUMO/html/classtask__share_1_1_share.html

3/15/2020 My Project: main Namespace Reference

file:///C:/Users/melab15/Desktop/SUMO/html/namespacemain.html 11/11

◆ times_up

main.strategymain.strategy

Initial value:
 1 = cotask.Task (Strategy, name = 'strategy', priority = 1,
 2 period = 25, profile = True, trace = False)

This task corresponds with Strategy() to be added to the scheduler.

main.times_upmain.times_up

Initial value:
 1 = task_share.Share ('h', thread_protect = True,
 2 name = "Time's up!")

Flag that determines if the end of the round is upon us (2min50sec)

Generated by 1.8.14

file:///C:/Users/melab15/Desktop/SUMO/html/classcotask_1_1_task.html
file:///C:/Users/melab15/Desktop/SUMO/html/classtask__share_1_1_share.html
http://www.doxygen.org/index.html

