

ME 405 SUMO Bot Report

Prepared for Charlie Refvam

March 16, 2020

Anthony Catello

Joseph Heald

Schuyler Ryan

Table of Contents
1: Project Overview .. 3

1.1: Background Information and Rules Overview .. 3

1.2: Project Customer.. 3

2: Design Specifications ... 4

2.1: Required Hardware .. 4

2.2: Safety Requirements and Competition Rules .. 4

3: Design Process .. 5

3.1: Strategy .. 5

3.2: Hardware Design ... 5

3.2.1: BOM ... 5

3.2.2: Component Selection Process ... 6

3.3: Software Design ... 7

4: Results ... 10

4.1: Hardware .. 10

4.2: Software ... 11

4.3: Overall ... 11

1: Project Overview

1.1: Background Information and Rules Overview
The purpose of this project is to design the software and hardware for an autonomous robot. The

robot will compete in a sumo robot competition which entails two bots being placed in a four-foot

diameter ring made of steel that is rimmed with a white paint outline. A single match lasts for three

minutes and starts with an IR “go” signal sent to the bots. After that signal the bots act completely

autonomously and do their best to be the last bot standing in the ring before the three minutes is

up. If after three minutes both bots are still in the ring than the bot closest to the center of the ring

is declared the winner of the match. Bots are not allowed to intentionally interfere with each other

or intentionally cause damage to opponents. More detailed design specifications for the design and

the rules can be found in Section 2.

1.2: Project Customer
We did our best to maximize the effectiveness of the bot while spending the least amount of money

on hardware because we are students. This thought motivated much of the hardware choices we

made and the software design and over strategy that we implemented. Overviews of our hardware

and software design and be found in sections 3 and 4 respectively. This bot is best suited for

someone who wants flexibility in their strategy and an overall low cost.

2: Design Specifications
This section will further discuss the design specification of our project. First, we will go over the

required hardware, and then we will discuss the limitations and end safety requirements of the bot.

2.1: Required Hardware
Our bot is required to implement at least the hardware components found in table 1.

Table 1: Required Hardware

Table 1 collects all the required hardware components for the completion of our bot. This list was

determined using research and the problem statement documentation provided to us by the ME

405 lab. Limitations on these components was also imposed, these quantitative restrictions can be

found in table 2.

Table 2: Hardware criteria and limitations.

2.2: Safety Requirements and Competition Rules
This sections further details the rules and regulations of the competition that do not pertain to

hardware requirements. Of these rules the main one is that we aren’t allowed to disrupt or

intentionally interfere with or harm an opponent’s bot.

3: Design Process
In this section we will outline the process of selecting our hardware components and writing our

software.

3.1: Strategy
Going into the project our primary goal was to spend the least amount of money but get the most

performance out of our bot. Because of this we decided that going for the most powerful motors

and high-end sensors wasn’t what we wanted. We decided that in order to win bot matches we

would avoid confrontation, because we wouldn’t have the motor torque or sensor quality to

effectively seek out and then push an opponent out of the ring. So, we decided to bet on the fact

that opponents wouldn’t be as good at staying in the ring. Our overall strategy was to avoid

contact with the other bot but circling the ring and speeding up or slowing down when the

opponent got closer than we wanted them. In addition to opponent avoidance, we were hoping to

“bait” opponents into approaching the edge of the ring to hunt us only to get out the way before

they reached us. A diagram of what we wanted our code to do can be seen in figure 1. The bot

would make an initial right turn and then detect the edge to make subsequent left turns.

Figure 1: Diagram of our bot strategy

3.2: Hardware Design
This section will first list the components that we used and then compare them to our design

requirements.

3.2.1: BOM
The final cost of our components was approximately $97. Our components were sourced from

the ME 405 lab, Amazon, group members’ personal storages, and even the trash. In general, we

chose the least expensive and simplest components that we could by being resourceful.

Table 3: Bill of Materials for Sumo-bot project.

3.2.2: Component Selection Process
The microcontroller board that was provided to us was the Nucleo-L476RG micro-controller with

a X-Nucleo-IHM04A1 DC motor driver expansion. Because this board was free and capable of

running all the tasks that we needed it to, we implemented it into our design. Also provided to us

was the VISHAY TSOP382 IR receiver module which fulfilled the requirement. From there we

selected a chassis. Considering we already knew that we didn’t want to spend a lot of money on

the project and planned to avoid bot to bot contact we chose a very reasonably priced chassis that

also came with 4 DC brushless motors. The exact power of the motors is unknown but seeing as

we found the chassis and four of them for under $20, we figured there was no way that they could

be over specification. This fact was confirmed during the competition when one of the other bots

pushed us off without slowing down. For power we used two separate batteries, a TURNIGY

2200mAh 3S 25C LIPO Battery Pack for our motor power supply, and an Insignia portable battery

pack for our micro-controller. The LIPO Battery Pack supplied a 11.2 DC voltage power supply,

and while this is outside the 15 Wh specified, it only means that the bot is going to last longer

without charges and the cost of the battery was cheaper when compared to other more specialized

batteries. The Insignia portable battery pack supplied 5 volts through a USB-A to USB-mini cable.

From here we selected a sensor package. We used a total of six sensors including the IR receiver

that was already mentioned. We wanted the ability to detect the edge of the ring on at least the

front and outside of our bot, so we used two Model TCRT5000 IR Reflection Sensors, because

they meet our requirements and were scrounged by a team member making them free. To simplify

things we used the analog output and ignored the digital signal. To keep track of horizontal position

we utilized a simple, inexpensive single channel encoder. The HC-020K Double Speed Photo-

electric Encoder had a 20-slot encoder wheel that enabled us to detect 40 edges. These were

somewhat problematic and will discuss it further in section 4.1. The encoders were mounted above

motors that came with our chassis. To manage cables better we drilled additional holes in our

chassis. For opponent detection we selected the GP2Y0A21 Sharp IR Analog Distance Sensors

because we were running us of time to put together the bot, they had two-day shipping and were

inexpensive and seemed simple to implement.

Each of these sensors was assigned a pin on our board (see simple wiring diagram in figure 2).

Figure 2:Diagram that details what pins are used for what purpose.

For an emergency kill switch we used a simple wall mounted light switch, this was placed in series

between the battery and the motor header.

We also included an “ON” button on our bot, which functioned as an alternative to the IR remote.

This was incredibly useful when more than a few groups were testing their SUMO-bot at once,

since there were only 2 IR remotes provided by the lab.

To inspire fear in our opponents and add a completely necessary intimidation factor, we opted

to hot glue the faces of the instructors over our IR distance sensors, which we paid for in the

nightmares it induced in us.

3.3: Software Design
To control our bot, we wrote software that would pass information from the sensor package to a

mastermind task that would “make decisions” and control our motors. Our mastermind task was

called Strategy.

Strategy used shares and queues from our sensors to choose between “SharpLeftTurn()” or

“EdgeTurning()” task functions that would set the PWM of the motor to turn the bot 90 degrees

or get it to follow the edge of the ring. The code for “SharpLeftTurn()” is shown below.

def SharpLeftTurn():

 '''This function is run every 25ms and makes the SUMO bot take a

sharp turn approximately 90 degrees counterclockwise.'''
 while True:

 #only operate when the sharp_left_turn flag is set
 if sharp_left_turn.get():

 #reset edge sensor flag for front(1) sensor

 EdgeSensor1Flag.put(False)

 #reset sharp_left_turn flag

 sharp_left_turn.put(False)

 #sets duty cycles for each motor train then

resumes forward movement
 DutyCycle1.put(-100)

 DutyCycle2.put(-25)

 Right.set_duty_cycle(DutyCycle1.get())

 Left.set_duty_cycle(DutyCycle2.get())

 utime.sleep_ms(320)

 DutyCycle1.put(35)

 DutyCycle2.put(35)

 Right.set_duty_cycle(DutyCycle1.get())

 Left.set_duty_cycle(DutyCycle2.get())

 yield(0)

 yield(0)

It is worth noticing that instead of tracking the encoder during our turning we time the function.

This is because we determined that doing some testing and using a timer instead of using our

rather unreliable optical encoder. This also allowed us to make turns in place that didn’t

accumulate any horizontal distance.

A Task diagram and State Diagrams for Critical tasks along with timing justification calculations

are included in the appendix. We chose to use these tasks because it allowed us to determine

what situation the bot was in and then use that information to alter our bot’s behavior, in a simple

and effective way.

Besides the code in our Main file, we imported 7 modules in total, only 1 of which we wrote.

The ‘pyb’ module we imported allowed us to control our microcontroller with python and the

‘Pin’, ’Timer’, ‘TimerChannel’, and ‘ADC’ classes. The ‘pyb’ module also allowed us to enable

and disable interrupts with the ‘enable_irq’ and ‘disable_irq’ methods. The ‘utime’ module was

used to keep track of the match timer, and to ensure that certain actions took a precise amount of

time to complete. The ‘gc’ module refers to “garbage collector”, and it was used to regularly

defrag memory in case we had any memory issues. The ‘alloc_emergency_exception_buf’

module was imported from micro-python and used to allocate memory for the interrupts we

used.

The only imported module we wrote ourselves was called ‘motor’ and allowed us to control the

PWM duty cycle of our motors through a ‘MotorDriver’ class we created. The ‘MotorDriver’

class also initialized all the pins necessary to control the motors with the ‘Pin’, ‘Timer’, and

‘TimerChannel’ classes from the ‘pyb’ module. We ultimately didn’t end up needing to use

either the ‘encoder_timer’ or ‘controller’ modules from prior labs. The ‘controller’ module

wasn’t used because our final strategy didn’t require the motors to have feedback control. The

‘encoder_timer’ module wasn’t used because our encoder only had 1 channel, and

‘encoder_timer’ required a quadrature encoder. The code for which is shown below.

Besides tasks we also had three interrupts. One was worked with our IR receiver and used a

queue called InterruptQueue to talk to our IR receiver task, one tracked edge in our encoder and

incremented or decremented a total tick counter, and the other gave us button functionality. All

three ran at 65535 Hz because we needed them to run as fast as possible to minimize total system

lag.

4: Results
This section will discuss the results of our project and evaluates the effectiveness of our design

and execution of that design along with any problems that we ran into along the way.

4.1: Hardware
The biggest fault of our bot was the lack of torque in our motors, which forced us to avoid

confrontation instead of seeking out and pushing opponents. Instead, our motors were designed

more for speed, which is why we spent most of our matches running away and evading our

opponents.

Our edge sensors worked great, which helped us avoid driving off the ring ourselves accidently.

Our optical sensors delivered a noisy voltage signal which made it difficult to reliably determine

our opponent’s distance from us. Additionally, every 1ms our optical sensors sent a pulse that

lasted for several hundred microseconds. Our attempt to counteract this issue was introducing a

filter shown in the “OpticalSensor1()” code below.

def OpticalSensor1():

 '''This function runs every 25ms and reads the optical sensor on the front

 of the SUMO bot and raises a flag if it reads a distance less than 8".'''

 #The front optical sensor, named Charlie

 #Initialize

 pinA4 = pyb.Pin(pyb.Pin.board.PA4, pyb.Pin.IN)

 Range1 = pyb.ADC(pinA4)

 while True:

 #If the bot isn't shut down:

 if not ShutDownFlag.get():

 #Read the optical sensor 4 times at 175 micro second increments

 #This is to account for and ignore a pulse the sensor sends every 1ms

 volt1lst = []

 for x in range(4):

 volt1lst.append((5*Range1.read()/4095))

 utime.sleep_us(175)

 #take the lowest of the 4 values because the pulse is always high

 Volt1 = min(volt1lst)

 #raise the Front_Detection flag if the voltage is high enough

 if Volt1 >= 3.5:

 Front_Detection.put(True)

 yield(0)

 yield(0)

The IR receiver we used worked well, but the limited range and angle made it unreliable at times,

which is why we implemented our “On” button. Our button, however, was excessively sensitive,

and would trigger whenever we gently brushed against it or even just approached it. We tried

solving this with a pull-down resistor in the pin we allocated to the button, but this didn’t help.

Additionally, it seems that the time-of-flight sensors on many of the bots would interfere with our

bots’ optical sensors and IR receiver, which made start up very difficult with some opponents.

During assembly and wiring of our bot, we frequently made mistakes that forced us to disassemble

and reassemble our bot. In the day leading up to the competition, we accidently shorted one of our

very few ADC pins, which required us to ask for a new microcontroller and motor driver

expansion. The new set we got worked exactly as intended.

4.2: Software
Our Software worked beautifully, and we are convinced that if we had better hardware and were

willing to spend more money, we would have easily won more matches. Many of our problems

stemmed from the basic and in some cases faulty hardware we purchased. The only notable bug

that persisted on the day of the competition was one where we would execute the avoidance

maneuver upon receiving a signal from our front optical sensor and pick up another signal in the

meantime and execute it again. Doing this maneuver two times back-to-back generally resulted

in our bot going backwards off the edge of the brink.

4.3: Overall
Our bot preformed the way we wanted it to. If we were to change anything in the future it would

be to buy better hardware and refine our strategy to accommodate it. Being able to safely move

backwards would be ideal.

5: Appendices
Appendix A – SUMO Bot Task Diagram

Appendix B – State Diagrams

Appendix C – Doxygen Code

6: References
[1] http://www.st.com/en/microcontrollers/stm32l476rg.html, pp.92

[2] https://pythonhosted.org/pyserial/

[3] https://docs.micropython.org/en/latest/library/pyb.html

[4] https://docs.micropython.org/en/latest/library/utime.html

[5] ME 405 Code at https://canvas.calpoly.edu/courses/7664/pages/scheduler-

files?module_item_id=21289

[6] Our source code at http://wind.calpoly.edu/hg/mecha12

Appendix A: Task Diagram

Appendix B: State Diagrams

Figure 3: State Diagram for Edge Detection Tasks

Figure 4: State Diagram for IR Range Finder.

Figure 5: State Diagrams for turning function.

Figure 6: Match timer state diagram.

Figure 7: IR Receiver State Diagram

